Integral Identities
Formal Integral Definition:


f(x) dx = lim
(d -> 0) 
(k=1..n) f(X
(k)) (x
(k) - x
(k-1))
when...
a = x0 < x1 < x2 < ... < xn = b
d = max (x1-x0, x2-x1, ... , xn - x(n-1))
x(k-1) <= X(k) <= x(k) k = 1, 2, ... , n


F '(x) dx = F(b) - F(a)
(Fundamental Theorem for integrals of derivatives)

a f(x) dx = a

f(x) dx
(if a is constant) 
f(x) + g(x) dx =

f(x) dx +

g(x) dx


f(x) dx =

f(x) dx | (a b)


f(x) dx +


f(x) dx =


f(x) dx

f(u) du/dx dx =

f(u) du
(integration by substitution)
No comments:
Post a Comment